online ISSN 2415-3176
print ISSN 1609-6371
logoExperimental and Clinical Physiology and Biochemistry
  • 3 of 13
Up
ECPB 2019, 85(1): 18–25
https://doi.org/10.25040/ecpb2019.01.018
Research articles

Activity of Enzymes of Energy Metabolism in Liver and Myocardial Tissues of Animals under the Influence of Hydrogen Sulfide Donor and Radiation

I.M. KOVALCHUK¹, M.R. GZHEGOTSKYI¹, S.M. KOVALCHUK¹, D.D. OSTAPIV²
Abstract

Current research on the balanced status of cellular metabolism and energy of vital organs under the conditions of extreme factors and the participation in these processes of hydrogen sulfide H2S transmitter remains relevant today.

The changes in the activity of enzymes of energy metabolism in the liver and heart tissues of animals were studied under the conditions of introduction hydrogen sulfide donor and the effect of radiation.

The studies were conducted on sexually mature male rats weighing 180-200 g. Animals were divided into control and four experimental groups, each of 8 rats. Hydrogen sulphide (NaHS) donor was injected at a dose of 7.4 mg/kg (Sigma Aldrich, USA) for 30 min intraabdominally to rats in the 1st experimental group. In animals of the 2nd, 3rd and 4th groups, the study was conducted through 24 hours, respectively, after administration of the hydrogen sulfide donor (7.4 mg/kg), exposure to ionizing radiation at a dose of 2 Gy and a combined effect of NaHS and ionizing radiation.

The activity of the investigated enzymes: aspartate aminotransferase (ASAT, AST, K.F. 2.6.1.1), malate dehydrogenase (MDH, K.F. 1.1.1.37), lactate dehydrogenase (LDH, K.F. 1.1.1.27), succinate dehydrogenase (SDH, K F. 1.3.99.1), cytochrome c oxidase (CcO, K.F. 1.9.3.1) was determined by spectrophotometric method (Bergmeyer H.U., 1983, SF-46).

It was established that 30 minutes after the introduction of H2S donor in the liver homogenate, the activity of SDH increased on 33 % and CcO increased on 17 % in comparison with control. One day after introduction of NaHS, the activity of these enzymes increased even more – on 45 % and 20 %, respectively. AST activity slightly increased with respect to control values through 30 minutes and 1 day after introduction of hydrogen sulfide donor. A significant disproportionate increase in the activity of SDH and CcO both comparing to control and radiation exposure (on 29 % and 17 % respectively), similar to that of NaHS alone, was established in the liver homogenate under the introduction of H2S donor before radiation exposure. Restoration of LDH activity, which exceeds its value at radiation action in 1,5 times, was established. Activation of MDH on 26 % was also noted for the effect of ionizing radiation. Activity of AST exceeded control on 20 %.

In the heart homogenate a significant increase in the activity of AST (65 %) in 30 minutes and even more (almost 2 times) increase in enzyme activity was observed one day after the introduction of the H2S donor. Under these conditions, activation of MDH has been noted. The effect of ionizing radiation on the background of the introduction of NaHS into the heart tissue leads to a significant increase in the activity of AST (2 times) in relation to control and 40% in relation to the effects of radiation, as well as increase in activity of SDH on 32 % to the control and on 55 % to radiation exposure.

Thus, the use of the H2S donor in the liver, as well as the effect of radiation on the background of its pre-introduction, leads to the activation of FAD-dependent energy formation, as evidenced by increased activity of SDH coupled with a less pronounced increase in the activity of CcO. In the heart tissue under the influence of hydrogen sulfide donor and action of ionizing radiation, the malate-aspartic shuttle mechanism is activated, which provides maintenance of the electrochemical gradient of protons, and, consequently, the increase of the capacity of the respiratory chain.

Keywords: hydrogen sulfide, ionizing radiation, aspartate aminotransferase (AsAT, AST), malate dehydrogenase (MDH), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), cytochrome c oxidase (CcO)

Full text: PDF (Ukr) 570K

References
  1. 1. Kimura H. Metabolic turnover of hydrogen sulfide. Front in Physiol. 2012;3:1-3. doi.org/10.3389/fphys.2012.00101
  2. 2. Szabo C. Hydrogen sulphide and its therapeutic potential. Nature Rev Drug Discovery. 2007;6(11):917-35. doi.org/10.1038/nrd2425
  3. 3. Paul BD, Snyder SH. H2S signalling through protein sulfhydration and beyond. Nature reviews. Mol Cell Biol. 2012;13:499-507. doi.org/10.1038/nrm3391
  4. 4. Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling. Ann Rev Pharm and Toxicol. 2011;51:169-87. doi.org/10.1146/annurev-pharmtox-010510-100505
  5. 5. Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC. Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res. 2008;79:632-41. doi.org/10.1093/cvr/cvn140
  6. 6. Lefer DJ. A new gaseous signaling molecule emerges: Cardioprotective role of hydrogen sulfide. PNAS. 2007;104(46):17907-8. doi.org/10.1073/pnas.0709010104
  7. 7. Lavu M, Bhushan S, Lefer DJ. Hydrogen sulfide-mediated cardioprotection: mechanisms and therapeutic potential. Clinical Science. 2011;120(6):219-29. doi.org/10.1042/CS20100462
  8. 8. Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiological Reviews. 2012;92(2):791-896. doi.org/10.1152/physrev.00017.2011
  9. 9. Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. The Journal of Biochemistry. 2009;146(5):623-6. doi.org/10.1093/jb/mvp111
  10. 10. Wallace JL, de Nucci G, Sulaieva O. Toward more GI-friendly anti-inflammatory medications. Curr. Treat. Opt. Gastroenterol. 2015;13(4):377-85. doi.org/10.1007/s11938-015-0064-9
  11. 11. Wallace JL, Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat. Rev. Drug Disc. 2015;14:329-45. doi.org/10.1038/nrd4433
  12. 12. Yang G, Wang R. H2S and blood vessels: an overview. Handb Exp Pharmacol. 2015;230:85-110. doi.org/10.1007/978-3-319-18144-8_4
  13. 13. Polhemus DJ, Calvert JW, Butler J, Lefer DJ. The cardioprotective actions of hydrogen sulfide in acute myocardial infarction and heart failure. Scientifica. 2014;2014:8. doi.org/10.1155/2014/768607
  14. 14. Kamins'kyy DV, Kryshchyshyn AP, Yelisyeyeva OP, Lesyk RB. Donory H2S u stvoreni innovatsiynykh likars'kykh zasobiv. Zhurnal orhanichnoyi ta farmatsevtychnoyi khimiyi. 2017;15,vyp.2(58):27-46 [in Ukrainian]. doi.org/10.24959/ophcj.17.918
  15. 15. Zhong GZ, Li YB, Liu XL, Guo LS, Chen ML, Yang XC. Hydrogen sulfide opens the KATP channel on rat atrial and ventricular myocytes. Cardiology. 2010;115:120-6. doi.org/10.1159/000260073
  16. 16. Luchkova AYu, Hoshovska YuV, Fedichkina RA, Strutynska NA, Sagach VF. Inhibition of mitochondrial H2S synthesis depresses heart function and increases sensitivity of mitochondria to calcium load. Fiziol Zh. 2017;63(4):3-9 [in Ukrainian]. doi.org/10.15407/fz63.04.003
  17. 17. Liu YH, Lu M, Hu LF, Wong P. TH, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxidants & Redox Signaling. 2012;17(1):141-185. doi.org/10.1089/ars.2011.4005
  18. 18. Shymans'ka TV, Hoshovs'ka IV, Semenikhina OM, Sahach V F. Effect of hydrogen sulfide on isolated rat heart reaction under volume load and ischemia-reperfusion. Fiziolohichnyі Zhurnal. 2012;58(6):57-66. [in Ukrainian].
  19. 19. Pan LL, Liu XH, Shen YQ, Wang NZ, Wu D, Xionq QH et al. Inhibition of NADPH oxidase 4-related signaling by sodium hydrosulfide attenuates myocardial fibrotic response. International Journal of Cardiology. 2013;168(4):3770-8. doi.org/10.1016/j.ijcard.2013.06.007
  20. 20. Wang X, Wang Q, Guo W, Zhu YZ. Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: a mechanism through cardiac mitochondrial protection. Bioscience Reports. 2011;31(2):87-98. doi.org/10.1042/BSR20100003
  21. 21. Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC. Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovascular Research. 2008;79(4):632-41. doi.org/10.1093/cvr/cvn140
  22. 22. Kostyuk SS. Vplyv hama-oprominennya na aktyvnist' fermentiv antyoksydantnoyi systemy kroliv. Biolohiya ta valeolohiya. 2014;16:16-20). [in Ukrainian].
  23. 23. Shen Y, Shen Z, Luo S, Guo W, Zhu YZ. The cardioprotective effects of hydrogen sulfide in the heart diseases: from molecular mechanisms to therapeutic potential. Oxid Med and Cell Long. 2014:1-14. doi.org/10.1155/2015/925167
  24. 24. Hryshchenko VA, Khyznyak SV, Tomchuk VA, Stepanova LI, Voytsits'kyyVM. Aktyvnist' fermtntiv elektrontransportnoho lantsyuha mitokhondriy enterotsytiv tonkoyi kyshky I hepatotsytiv pry diyi ekzohennykh chynnykiv ta vykorystanni liposom. Suchasni problemy toksykolohiyi. 2013;(1-2):59-62). [in Ukrainian].
  25. 25. Luchkova AYu, Strutyns'ka NA, Korkach YuP, Sahach VF. Inhibuvannya mitokhondrial'noho syntezu sirkovodnyu posylyye okysnyy stress ta pohirshuye robotu elektronno-transportnoho lantsyuha. Fiziolohichnyy zhurnal. 2018;64(6):9-16). [in Ukrainian]. doi.org/10.15407/fz64.06.009
  26. 26. Serkiz Ya, Lavrenchuk UY, Indyk VM, Rodionova NK, Lyps'ka AI, Drozd IP ta in. Biolohichna diya malykh doz ionizuyuchoyi radi- atsiyi. Shlakhy ta perspektyvy rozvytku eksperymental'noyi onkolohiyi v Ukrayini. Kyyiv: DIA; 2001:177-90). [in Ukrainian].
  27. 27. Chobot'ko HM, Lavrenchuk UY, Hurando SR, Teplukhina ZG, Ivanushko YaH, Halychs'ka NYu et al. Eksperymental'ni doslidzhennya mitokhondrial'noyi dysfunktsii v umovakh ionizuyuchoho vyprominyuvannya. V kn.: Viddaleni naslidky vplyvy ionizuyuchoho vyprominyuvannya. Kyyiv: ZAT «Nichlava»; 2007:71). [in Ukrainian].
  28. 28. Kysil O, Khyzhnyak S, Klepko A, Voitsitskiy V. The structural and functionalstate of enterocyte mitochondria under chronic and single ionizing irradiation. In book «Current problems of radiation research». Київ: НАН України, 2007:134-51.
  29. 29. Vlizlo VV, Fedoruk RS, Ratych IB, Makar IA, Vishchur OI, Sharan MM et al. Laboratorni metody doslidzhen' u biolohiyi, tvarynnytsvi ta veterynarniy medycyni: dovidnyk; Za red. VV Vlizla. L'viv, 2012. 762 s). [in Ukrainian].
  30. 30. Kovalchuk IM, Gzhegots'kyy MR, Kovalchuk SM. Vplyv donora sirkovod- nyu na variabelnist' sertsevoho rytmu I zhyrnokyslotnyy sklad fosfolipidiv miokarda shchuriv za umov diyi malykh doz umovakh ionizuyuchoho vyprominyuvannya. Visnyk problem biolohiyi і medycyny, 2018;3(145):118-24). [in Ukrainian].
  31. 31. Porivnyal'na kharakterystyka zhyrnokyslotnoho skladu fosfolipidiv I zahal'nykh lipidiv u tkanynakh miokarda, pechinky ta plazmy krovi shchuriv za umov diyi radiatsiyi ta poperedn'oho zastosuvannya donora sirkovodnyu. Eksperymental'na ta klinichna fiziolohiya ta biokhimiya. 2018,83(3):76-83). [in Ukrainian].


Програмування - Roman.im