online ISSN 2415-3176
print ISSN 1609-6371
logoExperimental and Clinical Physiology and Biochemistry
  • 2 of 8
Up
ECPB 2021, 92(1): 16–28
https://doi.org/10.25040/ecpb2021.01-02.016
Research articles

Modulation of immune system parameters during the development of glutamate-induced steatohepatosis and its correction with multiprobiotic «Symbiter acidophilic» concentrated

M.M. KONDRO
Abstract

The energy metabolism disorder which triggers immunological functions depression which can be manifested by cytokine dysregulation, change of functioning of the cellular components of the immune system with activation of humoral component resulting in hyperglobulinemia is found in clinical trials of type 2 diabetes and obesity. The developmental mechanisms and impact of immunological changes on the processes still remain undefined. It has been established that the visceral obesity without hyperphagia manifestations, accompanied by dyslipidemia, disturbed sensitivity of the peripheral tissue to insulin and hepatic steatosis development, being confirmed by morphological methods and morphometric analysis and shear wave elasticity imaging (SWEI), was registered in 4-month-old rats with neonatal injection of sodium glutamate. The splenic weight and the number of splenocytes in 4-month-old rats with neonatal injection of sodium glutamate decreased secondary to the development of visceral obesity and hepatic steatosis, which resulted in the immune system dysfunction one of the manifestations of which was a dysbalance of the content of pro- and anti-inflammatory cytokines in blood serum of the rats. The periodic administration of the multi-probiotic «Symbiter® acidophilic» concentrated in rats with glutamate-induced hepatic steatosis triggered the significant restoration of the morphological functional liver condition and the prevention of the hepatic steatosis development.

Recieved: 16.02.2021

Keywords: hepatic steatosis, sodium glutamate, spleen, lymphocytes, multi-probiotic «Symbiter® acidophilic» concentrated

Full text: PDF (Ukr) 764K

References
  1. 1. Imbernon M, Beiroa D, Vazquez MJ, Morgan DA, Veyrat-Durebex C, et al. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology. 2013;144(3):636-49.e6.
  2. 2. Guariano D, Nannipieri M, Iervasi G, Taddei S, Bruno RM. The role of the autonomic nervous system in the pathophysiology of obesity. Frontiers in Physiology. 2017;8:Article 665. 16 p.
  3. 3. Faggioni R. Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicity: role of tumor necrosis factor-α and IL-18. Proc. Natl. Acad. Scien. USA. 2000;97:2367-72.
  4. 4. Howard J, Cave B, Oksanen L. Enhanced leptin sensitivity and attenuation of died- csity in mice with haploinsufficiency of Socs3. Nat. Med. 2004;10:734-8.
  5. 5. Lord G, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394(6696):897-901.
  6. 6. Zhao T. Globular adiponectin decreases leptininduced tumor necrosis factor-α expression by murine macrophages: involvement of cAMP-PKA and MAPK pathways. Cell. Immunol. 2005;238:19-30.
  7. 7. Aleffi S. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology. 2005;42:1339-48.
  8. 8. Tian Z, Sun R, Wei H, Gao B. Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem. Biophys. Res. Commun. 2002;298:297-302.
  9. 9. Lord G, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature. 1998;394(6696):897-901.
  10. 10. Ma J, Yu L-J, Ma R-D, Zhang Y-P, Fang J-Z, Zhang X-Y, Yu T-X. Repair of glutamate- induced excitotoxic neuronal damage mediated by intracerebroventricular transplantation of neural stem cells in adult mice. Neurosci. Bull. 2007;23(4):209-14.
  11. 11. Parida S, Siddharth S, Sharma D. Adiponectin, obesity, and cancer: clash of the bigwigs in health and disease. Int J Mol Sci. 2019;20(10):2519.
  12. 12. Xu A, Wang Y, Keshaw H, et al. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest. 2003;112:91-100.
  13. 13. Masaki T. Adiponectin protects LPSinduced liver injury through modulation of TNF-α in KK-Ay obese mice. Hepatology. 2004;40:177-84.
  14. 14. Sanabria ER, Pereira MF, Dolnikoff MS, Andrade IS, Ferreira AT, Cavalheiro EA, Fernandes MJ. Deficit in hippocampal long-term potentiation in monosodium glutamate-treated rats. Brain Res Bull. 2002,59:47-51.
  15. 15. Nakanishi Y, Tsuneyama K, Fujimoto M, Salunga TL, et al. Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J Autoimmunity. 2008;30(1- 2):42-50.
  16. 16. Kobyliak N, Falalyeyeva T, Virchenko O, Mykchalchyshyn G, Bodnar P, Spivak M, et al. Comparative experimental investigation on the efficacy of mono- and multiprobiotic strains in non-alcoholic fatty liver disease prevention. BMC Gastroenterol. 2016;16:34.
  17. 17. Hirata AE, Andrade IS, Vaskevicius P, Dolnikoff MS. Monosodium glutamate (MSG)- obese rats develop glucose intolerance and insulin resistance to peripheral glucose uptake. Braz J Med Biol Res. 1997;30:671-4.
  18. 18. Larsen PJ, Mikkelsen JD, Jessop D, Lightman SL, Chowdrey HS. Neonatal monosodium glutamate treatment alters both the activity and the sensitivity of the rat hypothalamo-pituitary- adrenocortical axis. J Endocrinol. 1994;141:497-503.
  19. 19. Matysková R, Maletínská L, Maixnerová J, et al. Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57BL/6 and NMRI mice. Physiol Res. 2008;57:727-34.
  20. 20. Nakanishi Y, Tsuneyama K, Fujimoto M, Salunga T.L, et al. Monosodium glutamate (MSG): a villain and promoter of liver inflammation and dysplasia. J Autoimmunity. 2008;30(1- 2):42-50.
  21. 21. Bernardis LL, Patterson BD. Correlation between "Li index" and carcass fat content in weanling and adult female rats with hypothalamic lessions. J Endocrinol. 1968;40:527-8.
  22. 22. Boyum A. Separation of lymphocytes, lymphocyte subgroups and monocytes: a review. Lymphology. 1977;10:71-6.
  23. 23. Аmеrshаm Іntеrlеukіn-1β [(r)ІL-1β], Rаt Bіоtrаk ЕLІSА Systеm. Prоduct bооklеt. 2009. GЕ Hеаlthcаrе. RPN2743. 28 р.
  24. 24. Аmеrshаm Іntеrfеrоn Gаmmа [(r)ІFNγ], Rаt Bіоtrаk ЕLІSА Systеm. Prоduct bооklеt. 2009. GЕ Hеаlthcаrе. RPN2741. 28 р.
  25. 25. Аmеrshаm Іntеrlеukіn-12 [(r)ІL-12], Rаt Bіоtrаk ЕLІSА Systеm. Prоduct bооklеt. 2009. GЕ Hеаlthcаrе. RPN2744. 28 р.
  26. 26. Аmеrshаm Іntеrlеukіn-10 [(r)ІL-10], Rаt Bіоtrаk ЕLІSА Systеm. Prоduct bооklеt. 2009. GЕ Hеаlthcаrе. RPN27466. 28 р.
  27. 27. Аmеrshаm Іntеrlеukіn-4 [(r)ІL-4], Rаt Bіоtrаk ЕLІSА Systеm. Prоduct bооklеt. - 2009. GЕ Hеаlthcаrе. RPN2747. 28 р.
  28. 28. Plokhinsky NA Mathematical methods in biology. M .: Izd-vo MGU 1981:265 p.
  29. 29. Nagata M, Suzuki W, Iizuka S, Tabuchi M, Maruyama H, Takeda S, et al. Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp Anim., 2006;55(2):109-15.
  30. 30. Papa PC. GLUT4 protein is differently modulated during development of obesity in monosodium glutamate-treated mice. Life Sci. 2002; 71(16):1917-28.
  31. 31. Hоjlund K. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J. 2014;61(7):B4890.
  32. 32. Wang ZV, Scherer PE. Adiponectin: the past two decades. J Mol Cell Biol. 2016;8(2):93-100.
  33. 33. Savcheniuk О, Kobyliak N, Kondro M, Virchenko O, Falalyeyeva T, Beregova T. Short- term periodic consumption of multiprobiotic from childhood improves insulin sensitivity, prevents development of non-alcoholic fatty liver disease and adiposity in adult rats with glutamate- induced obesity. BMC Complementary and Alternative Medicine. 2014;14:247.
  34. 34. Choi WJ, Dong HJ, Jeong HU, Jung HH, Kim YH, Kim TH. Antiobesity effects of Lactobacillus plantarum LMT1-48 Accompanied by Inhibition of Enterobacter cloacae in the Intestine of Diet-Induced Obese Mice. J Med Food. 2019;22(6):560-6.
  35. 35. Choi WJ, Dong HJ, Jeong HU, Ryu DW, Song SM, Kim YR, Jung HH, Kim TH, Kim YH. Lactobacillus plantarum LMT1-48 exerts anti-obesity effect in high-fat diet-induced obese mice by regulating expression of lipogenic genes. Sci Rep. 2020;10(1):869.
  36. 36. Duseja A, Acharya SK, Mehta M, Chhabra S, Shalimar, Rana S, et al. High potency multistrain probiotic improves liver histology in non-alcoholoc fatty liver disease (NAFLD): a randomised, double-blind, proof of concept study. BMJ Open Gastroenterology. 2019; e000315.
  37. 37. Perello M, Gaillard RC, Chisari A, Spinedi A. Adrenal enucleation in MSG-dameged hyperleptinemic male rats transiently restores adrenal sensitivity to leptin. Neuroendocrinology. 2003;78:176-84.
  38. 38. Chen W, Wang LL, Liu HY, Long L, Li S. Peroxisome proliferator-activated receptor delta-agonist, GW501516, ameliorates insulin resistance, improves dyslipidaemia in monosodium L-glutamate metabolic syndrome in mice. Basic Clin Pharmacol Toxicol. 2008,103:240-6.
  39. 39. Pallett AL, Morton NM, Cawthorne MA, Emilsson V. Leptin inhibits unsulin secretion and reduces insulin mRNA levels in ratisolated pancreatic islets. Biochem Biophys Res Commun. 1997;238:267-70.
  40. 40. Welty FK, Alfaddagh A, Elajami TK. Targeting inflammation in metabolic syndrome. Transl. Res. 2016;167:257-80.
  41. 41. Byrne CD, Targher G. NAFLD: a multisystem disease. J.Hepatol. 2015;62:47-64.
  42. 42. Hazman Ö, Ovalı S. Investigation of the anti-inflammatory effects of safranal on high- fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Inflammation. 2015;38:1012-9.
  43. 43. Caetano LC, Bonfleur ML, Ribeiro RA, Nardelli TR, Lubaczeuski C, do Nascimento da Silva J, et al. Taurine supplementation regulates Ik-Ba protein expression in adipose tissue and serum IL-4 and TNF- a concentrations in MSG obesity. Eur. J. Nutr. 2017;56:705-13.
  44. 44. Castrogiovanni D, Gaillard RC, Giovambattista A, Spinedi E. Neuroendocrine, metabolic, and immune functions during the acute phase response of inflammatory stress in monosodium L-glutamate-damaged hyperadipose male rat. Neuroendocrinology. 2008;88:227-34.
  45. 45. Roman-Ramos R, Almanza-Perez JC. Garcia-Macedo R, Blancas-Flores G, Fortis-Barrera A, Jasso EI, et al. Monosodium glutamate neonatal intoxication associated with obesity in adult stage is characterized by chronic inflammation and increased mRNA expression of peroxisome proliferator- activated receptors in mice. Basic. Clin. Pharmacol. Toxicol. 2011;108:406-13.
  46. 46. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 2006;17:4-12.
  47. 47. Matsuki T, Horai R, Sudo K, Iwakura Y. IL-1 plays an important role in lipid metabolism by regulating insulin levels under physiological conditions. J. Exp. Med. 2003;198:877-88.
  48. 48. Calderan L, Marzola P, Nicolato E. In vivo phenotyping of the ob/ob mouse by magnetic resonance imaging and 1H-magnetic resonance spectroscopy. Obesity. 2006;14:405-14.
  49. 49. Hariri N, Thibault L. High-fat diet-induced obesity in animal models. Nutrition Research Reviews. 2010;23:270-99.
  50. 50. Bedoui S, Velkoska Е, Bozinovski S. Unaltered TNF-α production by macrophages and monocytes in diet-induced obesity in the rat. Journal of inflammation. 2005;2:11-8.


Програмування - Roman.im