online ISSN 2415-3176
print ISSN 1609-6371
logoExperimental and Clinical Physiology and Biochemistry
  • 1 of 8
Up
ECPB 2021, 92(1): 5–15
https://doi.org/10.25040/ecpb2021.01-02.005
Literature review

Autonomic viscero-visceral cardioneuropathy (literature review and own data)

L.M. STRILCHUK
Abstract

Disorders of the autonomic nervous system are involved in the pathogenesis of all diseases, but their investigation is of the utmost importance in cardiology. Modulation of the autonomic nervous system is now considered as a strategy of therapeutic influence on cardiovascular diseases. Purpose was to review the current views on the mechanisms, clinical manifestations, diagnosis and treatment of autonomic cardioneuropathy, in particular, of biliary origin, and to pool own data on this topic. Literature review in the Pubmed database and summary of the results of own research. The innervation axis of the heart is a multilevel system of integrative centers, which determines the complexity of the interaction mechanisms. Viscero-visceral reflexes are the main trigger of changes in the autonomic nervous system activity. Biliary-cardiac interactions cause the development of biliary autonomic viscero-visceral cardioneuropathy (BAVVCNP). In such cases, cholecystectomy improves the condition of the heart, but metabolic disorders and neuroendocrine imbalance persist, which leads to the clinical symptoms of postbiliary cardioneuropathy (PBCNP). According to our own research, BAVVKCP is accompanied by a significant increase in heart rate, left ventricular dilatation, systolic dysfunction. On the background of PBCNP structural and functional parameters of the heart improve, and arrhythmogenic activity of the myocardium reduces. Autonomic cardioneuropathy is a consequence of viscero-visceral reflexes and disorders of myocardial metabolism at the cellular level. Cardioneuropathy leads to various clinical manifestations with electrical instability, arrhythmias, ventricular dysfunction and remodulation, and coronary insufficiency. Manifestations of biliary autonomic viscero-visceral cardiopathy include the increased heart rate and arrhythmia, prolongation of ventricular systole and depression of the ST interval, and arterial hypertension. 4. In patients with postbiliary cardioneuropathy, the structural and functional parameters of the heart improve and the number of arrhythmias decreases, which indicates the interruption of pathological autonomic impulses.

Recieved: 11.02.2021

Keywords: cardioneuropathy, autonomic nervous system, biliary-cardiac reflex

Full text: PDF (Ukr) 334K

References
  1. 1. Kingma JN, Simard D, Rouleau JR. Autonomic nervous system and neurocardiac physiopathology. In: Svorc P, editor. Autonomic Nervous System [Internet]; 2018.
  2. 2. Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: The HOORN study. Diabetes Care. 2001; 24 (10):1793-8.
  3. 3. Pop-Busui R. Cardiac autonomic neuropathy in diabetes: A clinical perspective. Diabetes Care. 2010; 33 (2):434-41.
  4. 4. Ziemssen T, Siepmann T. The Investigation of the Cardiovascular and Sudomotor Autonomic Nervous System-A Review. Front Neurol. 2019; 10:53.
  5. 5. Ziemssen T, Reichmann H. Cardiovascular autonomic dysfunction in Parkinson's disease. J Neurol Sci. 2010; 289:74-80.
  6. 6. Bauer A. Identifying high-risk post-infarction patients by autonomic testing - Below the tip of the iceberg. Int J Cardiol. 2017; 237:19-21.
  7. 7. Shen MJ, Choi EK, Tan AY, Lin SF, Fishbein MC, Chen LS, et al. Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol. 2011; 9(1):30-9.
  8. 8. Amar D, Zhang H, Miodownik S, Kadish AH. Competing autonomic mechanisms precede the onset of postoperative atrial fibrillation. J Am Coll Cardiol. 2003; 42(7):1262-8.
  9. 9. Patterson E, Po SS, Scherlag BJ, Lazzara R. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005; 2:624-31.
  10. 10. Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Nati Acad Sci USA. 2016; 113:8284-9.
  11. 11. Hanna P, Rajendran PS, Ajijola OA, Vaseghi M, Armour JA, Ardell JL, et al. Cardiac neuroanatomy - imaging nerves to define functional control. Autonomic Neuroscience. 2017; 207:48-58.
  12. 12. Randall DC, Brown DR, McGuirt AS, Thompson GW, Armour JA, Ardell JL. Interactions within the intrinsic cardiac nervous system contribute to chronotropic regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1066.
  13. 13. Csepe TA, Zhao J, Hansen BJ, Li N, Sul LV, Lim P, et al. Human sinoatrial node structure: 3D microanatomy of sinoatrial conduction pathways. Prog Biophys Mol Biol. 2016; 120(1-3):164-78.
  14. 14. Pardini BJ, Lund DD, Schmid PG. Organization of the sympathetic postganglionic innervation of the rat heart. Journal of the Autonomic Nervous System. 1989; 28 (3):193-201.
  15. 15. Wallis D, Watson AH, Mo N. Cardiac neurons of autonomic ganglia. Microscopy Research and Technique. 1996; 35 (1):69-79.
  16. 16. Wang HJ, Wang W, Cornish KG, Rozanski GJ, Zucker IH. Cardiac sympathetic afferent denervation attenuates cardiac remodeling and improves cardiovascular dysfunction in rats with heart failure. Hypertension. 2014; 64:745.
  17. 17. Goldberger JJ, Arora R, Buckley U, Shivkumar K. Autonomic Nervous System Dysfunction. Journal of the American College of Cardiology. 2019; 73 (10):1189-206.
  18. 18. Kuder T, Nowak E. Autonomic cardiac nerves: literature review. Folia Morphologica. 2015. 74; 1:1-8.
  19. 19. Hopkins DA, MacDonald SE, Murphy DA, Armour JA. Pathology of intrinsic cardiac neurons from ischemic human hearts. The Anatomical Record. 2000; 259: 424-36.
  20. 20. Hasan W. Autonomic cardiac innervation: development and adult plasticity. Organogenesis. 2013; 9 (3):176-93.
  21. 21. Kimura K, Ieda M, Fukuda K. Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circulation Research. 2012; 110:325-36.
  22. 22. Ardell JL, Randall WC. Selective vagal innervation of sinoatrial and atrioventricular nodes in canine heart. Am J Physiol. 1986; 251(4 Pt 2): H764-73.
  23. 23. Randall WC, Milosavljevic M, Wurster RD, Geis GS, Ardell JL. Selective vagal innervation of the heart. Annals of Clinical and Laboratory Sciences. 1986; 16(3):198-208.
  24. 24. Singh S, Johnson PI, Lee RE, Orfei E, Lonchyna VA, Sullivan HJ, et al. Topography of cardiac ganglia in the adult human heart. J Thorac Cardiovasc Surg. 1996; 112(4):943-53.
  25. 25. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 1997; 247: 289-98.
  26. 26. Buckley U, Shivkumar K, Ardell JL. Autonomic regulation therapy in heart failure. Curr Heart Fail Rep 2015; 12:284-93.
  27. 27. Shivkumar K, Ajijola OA, Anand I, Armour JA, Chen PS, Esler M, et al. Clinical neurocardiology defining the value of neuroscience-based cardiovascular therapeutics. J Physiol 2016; 594:3911-54.
  28. 28. Ai J, Epstein PN, Gozal D, Yang B, Wurster R, Cheng ZJ. Morphology and topography of nucleus ambiguus projections to cardiac ganglia in rats and mice. Neuroscience. 2007; 149(4):845-60.
  29. 29. Armour JA. Myocardial ischemia and the cardiac nervous system. Cardiovasc Res. 1999; 41(1):41-54.
  30. 30. McAllen RM, Salo LM, Paton JF, Pickering AE. Processing of central and reflex vagal drives by rat cardiac ganglion neurones: an intracellular analysis. J Physiol. 2011; 589(Pt 23):5801-18.
  31. 31. Suzuki K, Nakai A. Autonomic control of inflammation. Clin Exp Neuroimmunol. 2016; 7:10-17.
  32. 32. Adlan AM, Paton JFR, Lip GUH, Kitas GD, Fisher JP. Increased sympathetic nerve activity and reduced cardiac baroreflex sensitivity in rheumatoid arthritis. J Physiol. 2017; 595:967-81.
  33. 33. Schafer RC. Basic Principles of Chiropractic Neuroscience. American Chiropractic Association, 1990.
  34. 34. Pottenger FM. Symptoms of Visceral Disease, ed 6. St. Louis, C.V. Mosby, 1949.
  35. 35. Kuntz A. Autonomic and physiologic properties of cutaneovisceral vasomotor reflex arcs. Journal of Neurophysiology. 1945; 8:421-9.
  36. 36. Straus DC, Hamburger WW. The significance of cardiac irregularities. JAMA. 1924; 82: 706-12.
  37. 37. Babcock R. Chronic cholecystitis as a cause of myocardial incompetence. JAMA, 1909; 52: 1904-10.
  38. 38. Schrager VL, Ivy IC. Symptoms produced by distension of the gallbladder and biliary ducts. Surg Gynecol J Obstet. 1928; 47: 1-13.
  39. 39. Brumovsky PR, Gebhart GF. Visceral organ cross-sensitization - an integrated perspective. Auton. Neurosci. 2010;153(1-2):106-110.
  40. 40. Haleem S, Ansari MM, Khan TZ, Beg MH. Cholecysto-cardiac link. Indian J. Med. Res. 1991; 94:47-9.
  41. 41. Ambepityia G, Kopelman PG, Ingram D, Swash M, Mills PG, Timmis AD. Exertional myocardial ischemia in diabetes: a quantitative analysis of anginal perceptual threshold and the influence of autonomic function. J Am Coll Cardiol. 1990;15(1):72-7.
  42. 42. Whitsel EA, Boyko EJ, Siscovick DS. Reassessing the role of QT(c) in the diagnosis of autonomic failure among patients with diabetes: a meta-analysis. Diabetes Care. 2000;23(2):241-7.
  43. 43. Bissinger A. Cardiac Autonomic Neuropathy: Why Should Cardiologists Care about That? J Diabetes Res. 2017; 2017: 5374176.
  44. 44. Pop-Busui R. What do we know and we do not know about cardiovascular autonomic neuropathy in diabetes. Journal of Cardiovascular Translational Research. 2012;5(4):463-78.
  45. 45. Ziegler D. Diabetic cardiovascular autonomic neuropathy: prognosis, diagnosis and treatment. Diabetes/Metabolism Reviews. 1994; 10(4): 339-83.
  46. 46. Balcıoğlu AS, Müderrisoğlu H. Diabetes and cardiac autonomic neuropathy: clinical manifestations, cardiovascular consequences, diagnosis and treatment. World Journal of Diabetes. 2015; 6(1): 80-91.
  47. 47. Pop-Busui R, Cleary PA, Braffett BH, Martin CL, Herman WH, Low PA, et al. Association between cardiovascular autonomic neuropathy and left ventricular dysfunction: DCCT/EDIC study (Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications) Journal of the American College of Cardiology. 2013; 61(4): 447-54.
  48. 48. Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World Journal of Diabetes. 2014; 5(1): 17-39.
  49. 49. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, et al. Myocardial cell death in human diabetes. Circulation Research. 2000; 87(12): 1123-32.
  50. 50. Maser RE, Mitchell BD, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care. 2003; 26(6): 1895-901.
  51. 51. Fisher VL, Tahrani AA. Cardiac autonomic neuropathy in patients with diabetes mellitus: current perspectives. Diabetes Metab Syndr Obes. 2017; 10: 419-34.
  52. 52. Breder ISS, Sposito AC. Cardiovascular autonomic neuropathy in type 2 diabetic patients. Revista da Associacao Medica Brasileira. 2019; 65(1): 56-60.
  53. 53. Guo Y, Palmer JL, Strasser F, Yusuf SW, Bruera E. Heart rate variability as a measure of autonomic dysfunction in men with advanced cancer. Eur J Cancer Care. 2013; 22(5): 612-6.
  54. 54. Bruera E, Chadwick S, Fox R, Hanson J, MacDonald N. Study of cardiovascular autonomic insufficiency in advanced cancer patients. Cancer Treat Rep. 1986; 70(12): 1383-7.
  55. 55. Walsh D, Nelson KA. Autonomic nervous system dysfunction in advanced cancer. Support Care Cancer. 2002; 10(7): 523-8.
  56. 56. Turner ML, Boland OM, Parker AC, Ewing DJ. Subclinical autonomic dysfunction in patients with Hodgkin's disease and non-Hodgkin's lymphoma. Br J Haematol. 1993; 84(4): 623-6.
  57. 57. Goldstein DS, Holmes C, Li S-T, Bruce S, Metman LV, Cannon RO III. Cardiac sympathetic denervation in Parkinson disease. Ann Intern Med. 2000; 133(5): 338-47.
  58. 58. Goldstein DS, Holmes CS, Dendi R, Bruce SR, Li S-T. Orthostatic hypotension from sympathetic denervation in Parkinson's disease. Neurology. 2002; 58(8): 1247-55.
  59. 59. Demarchi MS, Regusci L, Fasolini F. Electrocardiographic Changes and False-Positive Troponin I in a Patient with Acute Cholecystitis. Case Rep.Gastroenterol. 2012; 6(2): 410-414.
  60. 60. Pourmorteza M, Murtaza G, Young M. ST-Segment Elevation Disguised as Cholecystitis, American Journal of Gastroenterology. 2016; 111: S5.
  61. 61. Kim KW, Kim HY, Chun JK, Cha BH, Namgoong MK, Kwon W, et al. Relationship between gallbladder distension and lipid profiles in kawasaki disease. Korean Circ J. 2010; 40(3): 137-40.
  62. 62. Bitner M, Jaszewski R, Jander S, Maciejewski M. Laparoscopic cholecystectomy delayed by complicated myocardial infarction with papillary muscle rupture, and performed after unique complex mitral repair. Wideochir Inne Tech Maloinwazyjne. 2013; 8(2): 170-3.
  63. 63. Axelrod S, Lishner M, Oz O, Bernheim J, Ravid M. Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron. 1987; 45(3): 202-6.
  64. 64. Benichou T, Pereira B, Mermillod M, Tauveron I, Pfabigan D, Maqdasy S, et al. Heart rate variability in type 2 diabetes mellitus: a systematic review and meta-analysis. PLoS ONE. 2018; 13(4): e0195166.
  65. 65. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017; 40(1): 136-54.
  66. 66. The Diabetes Control and Complications Trial Research Group, Group TDC and CTR. The effect of intensive diabetes therapy on the development and progression of neuropathy. The Diabetes Control and Complications Trial Research Group. Ann Intern Med. 1995; 122(8): 561-8.
  67. 67. Neil HA, Thompson AV, Thorogood M, Fowler GH, Mann JI. Diabetes in the elderly: the Oxford Community Diabetes Study. Diabet Med. 1989; 6(7): 608-13.
  68. 68. Ziegler D, Gries FA, Mühlen H, Rathmann W, Spüler M, Lessmann F. Prevalence and clinical correlates of cardiovascular autonomic and peripheral diabetic neuropathy in patients attending diabetes centers. The Diacan Multicenter Study Group. Diabete Metab. 1993; 19(1 Pt 2): 143-51.
  69. 69. Ziegler D, Strom A, Kupriyanova Y, Bierwagen A, Bönhof GJ, Bódis K, et al. Association of lower cardiovagal tone and baroreflex sensitivity with higher liver fat content early in type 2 diabetes. J Clin Endocrinol Metab. 2018; 103(3): 1130-8.
  70. 70. Lakoski SG, Jones LW, Krone RJ, Stein PK, Scott JM. Autonomic dysfunction in early breast cancer: incidence, clinical importance, and underlying mechanisms. Am Heart J. 2015; 170(2): 231-41.
  71. 71. Coumbe BGT, Groarke JD. Cardiovascular autonomic dysfunction in patients with cancer. Curr Cardiol Rep. 2018; 20(8): 69.
  72. 72. Stone CA, Kenny RA, Nolan B, Lawlor PG. Autonomic dysfunction in patients with advanced cancer; prevalence, clinical correlates and challenges in assessment. BMC Palliat Care. 2012; 11(1): 3.
  73. 73. Groarke JD, Tanguturi VK, Hainer J, Klein J, Moslehi JJ, Ng A, et al. Abnormal exercise response in long-term survivors of hodgkin lymphoma treated with thoracic irradiation: evidence of cardiac autonomic dysfunction and impact on outcomes. J Am Coll Cardiol. 2015; 65(6): 573-83.
  74. 74. Novak P. Quantitative autonomic testing. J Vis Exp. 2011; (53): e2502.75.
  75. 75. Noor B, Akhavan S, Leuchter M., Yang EH, Ajijola OA. Quantitative assessment of cardiovascular autonomic impairment in cancer survivors: a single center case series. Cardio-Oncology. 2020; 6: 11.
  76. 76. Foreman RD, Garrett KM, Blair RW. Mechanisms of cardiac pain. Compr. Physiol. 2015; 5(2): 929-60.
  77. 77. Kumar N, Kumar P, Dubey PK, Kumar A, Kumar A. Cope's sign and complete heart block secondary to acute cholecystitis: A case report. Journal of Acute Disease. 2020; 9(4): 176-8.
  78. 78. Franzen D, Jung S, Fatio R, Brunckhorst CB. Complete atrio-ventricular block in a patient with acute cholecystitis: a case of cardio-biliary reflex? Eur J Emerg Med. 2009; 16: 346-7.
  79. 79. Chao DM, Shen LL, Cao YX, Li P. [Inhibitory effect of electroacupuncture on the cardiovascular response evoked by applying bradykinin on the gallbladder]. Sheng Li Xue Bao. 1999; 51(2): 175-80.
  80. 80. Schmidt G, Malik M, Barthel P, Schneider R, Ulm K, Rolnitzky L, et al. Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet. 1999; 353(9162): 1390-6.
  81. 81. Lin K, Wei L, Huang Z, Zeng Q. Combination of Ewing test, heart rate variability, and heart rate turbulence analysis for early diagnosis of diabetic cardiac autonomic neuropathy. Medicine (Baltimore). 2017; 96(45): e8296.
  82. 82. Spallone V, Bellavere F, Scionti L, Maule S, Quadri R, Bax G, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovasc Dis. 2011; 21(1): 69-78.
  83. 83. Bernardi L, Spallone V, Stevens M, Hilsted J, Frontoni S, Pop-Busui R, et al. Methods of investigation for cardiac autonomic dysfunction in human research studies. Diabetes Metab Res Rev. 2011; 1-21.
  84. 84. Boulton AJM, Vinik AI, Arezzo JC, Bril V, Feldman EL, Freeman R, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005; 28(4): 956-62.
  85. 85. Strilchuk LM. Mechanisms of cholecysto-cardial interaction (literature review and own data). Experymentalna i klinichna medytsyna. 2018; 2-3: 79-87.
  86. 86. Strilchuk LM. Heart rate and arrhythmia incidence in cardiological and rheumatological patients on the background of different gallbladder condition. Ukrajinskyj zhurnal medytsyny, biologiji ta sportu. 2020, Vol.5, # 3 (25): 249-54
  87. 87. Strilchuk LM, Besh DI, Rafalyuk OI. ECG and EchoCG changes in dependence of gallbladder condition Folia cardiologica 2018; 13(3): 210-215.
  88. 88. Strilchuk LM, Olenych LV. Gallbladder distension as a trigger of reflex influences of afferent pathologic impulsation. Suchasna gastroenterologiya. 2020; 5: 15-20.
  89. 89. Strilchuk LM, Besh DI, Rafalyuk OI. Changes of electro- and echocardiographic parameters depending on gallbladder condition in patients with ischemic heart disease, which underwent aorto-coronary bypass grafting. Zbirnyk naukovykh prats "Suchasni aspekty vijskovoji medycyny". 2018; 25: 287-94.
  90. 90. Strilchuk LM. The influence of cholecystectomy on heart condition, lipid metabolism and inflammation activeness, Acta Medica Leopoliensia. 2020; 26 (2-3): 4-10.


Програмування - Roman.im